Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77.525
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727278

RESUMO

Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.


Assuntos
Espermatogônias , Humanos , Animais , Masculino , Espermatogônias/citologia , Espermatogônias/metabolismo , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/citologia , Diferenciação Celular/genética , Espermatogênese/genética , Transcriptoma/genética , Adulto , Camundongos , Feto/citologia , Testículo/citologia , Testículo/metabolismo , Roedores , Ratos , Análise de Célula Única
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731907

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Assuntos
Rim , Ácido Linoleico , Morfogênese , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ácido Linoleico/metabolismo , Masculino , Ratos Endogâmicos WKY , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Feto/metabolismo , Feto/efeitos dos fármacos
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731997

RESUMO

Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights. These findings led us to subject RNA derived from SLC2A3-RNAi (RNA interference) and NTS-RNAi (non-targeting sequence) fetal pancreases to qPCR followed by transcriptomic analysis. We identified a total of 771 differentially expressed genes (DEGs). Upregulated pathways were associated with fat digestion and absorption, particularly fatty acid transport, lipid metabolism, and cholesterol biosynthesis, suggesting a potential switch in energetic substrates due to hypoglycemia. Pathways related to molecular transport and cell signaling in addition to pathways influencing growth and metabolism of the developing pancreas were also impacted. A few genes directly related to gluconeogenesis were also differentially expressed. Our results suggest that fetal hypoglycemia during the first half of gestation impacts fetal pancreas development and function that is not limited to ß cell activity.


Assuntos
Hipoglicemia , Pâncreas , Placenta , Interferência de RNA , Transcriptoma , Gravidez , Animais , Feminino , Placenta/metabolismo , Ovinos , Pâncreas/metabolismo , Pâncreas/embriologia , Hipoglicemia/genética , Hipoglicemia/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Feto/metabolismo , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Perfilação da Expressão Gênica
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732014

RESUMO

Fetal organs and organoids are important tools for studying organ development. Recently, porcine organs have garnered attention as potential organs for xenotransplantation because of their high degree of similarity to human organs. However, to meet the prompt demand for porcine fetal organs by patients and researchers, effective methods for producing, retrieving, and cryopreserving pig fetuses are indispensable. Therefore, in this study, to collect fetuses for kidney extraction, we employed cesarean sections to preserve the survival and fertility of the mother pig and a method for storing fetal kidneys by long-term cryopreservation. Subsequently, we evaluated the utility of these two methods. We confirmed that the kidneys of pig fetuses retrieved by cesarean section that were cryopreserved for an extended period could resume renal growth when grafted into mice and were capable of forming renal organoids. These results demonstrate the usefulness of long-term cryopreserved fetal pig organs and strongly suggest the effectiveness of our comprehensive system of pig fetus retrieval and fetal organ preservation, thereby highlighting its potential as an accelerator of xenotransplantation research and clinical innovation.


Assuntos
Criopreservação , Feto , Transplante de Rim , Rim , Organoides , Animais , Criopreservação/métodos , Suínos , Rim/citologia , Organoides/citologia , Organoides/transplante , Camundongos , Transplante de Rim/métodos , Feto/citologia , Feminino , Transplante Heterólogo/métodos , Preservação de Órgãos/métodos
5.
Commun Biol ; 7(1): 538, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714799

RESUMO

Human adolescent and adult skeletons exhibit sexual dimorphism in the pelvis. However, the degree of sexual dimorphism of the human pelvis during prenatal development remains unclear. Here, we performed high-resolution magnetic resonance imaging-assisted pelvimetry on 72 human fetuses (males [M]: females [F], 34:38; 21 sites) with crown-rump lengths (CRL) of 50-225 mm (the onset of primary ossification). We used multiple regression analysis to examine sexual dimorphism with CRL as a covariate. Females exhibit significantly smaller pelvic inlet anteroposterior diameters (least squares mean, [F] 8.4 mm vs. [M] 8.8 mm, P = 0.036), larger subpubic angle ([F] 68.1° vs. [M] 64.0°, P = 0.034), and larger distance between the ischial spines relative to the transverse diameters of the greater pelvis than males. Furthermore, the sacral measurements indicate significant sex-CRL interactions. Our study suggests that sexual dimorphism of the human fetal pelvis is already apparent at the onset of primary ossification.


Assuntos
Feto , Osteogênese , Pelve , Caracteres Sexuais , Humanos , Feminino , Masculino , Pelve/embriologia , Pelve/anatomia & histologia , Pelve/diagnóstico por imagem , Feto/anatomia & histologia , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ossos Pélvicos/anatomia & histologia , Ossos Pélvicos/diagnóstico por imagem , Ossos Pélvicos/embriologia , Estatura Cabeça-Cóccix , Desenvolvimento Fetal , Pelvimetria/métodos
6.
Sci Rep ; 14(1): 10854, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740788

RESUMO

Unlike adult mammalian wounds, early embryonic mouse skin wounds completely regenerate and heal without scars. Analysis of the underlying molecular mechanism will provide insights into scarless wound healing. Twist2 is an important regulator of hair follicle formation and biological patterning; however, it is unclear whether it plays a role in skin or skin appendage regeneration. Here, we aimed to elucidate Twist2 expression and its role in fetal wound healing. ICR mouse fetuses were surgically wounded on embryonic day 13 (E13), E15, and E17, and Twist2 expression in tissue samples from these fetuses was evaluated via in situ hybridization, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction. Twist2 expression was upregulated in the dermis of E13 wound margins but downregulated in E15 and E17 wounds. Twist2 knockdown on E13 left visible marks at the wound site, inhibited regeneration, and resulted in defective follicle formation. Twist2-knockdown dermal fibroblasts lacked the ability to undifferentiate. Furthermore, Twist2 hetero knockout mice (Twist + /-) formed visible scars, even on E13, when all skin structures should regenerate. Thus, Twist2 expression correlated with skin texture formation and hair follicle defects in late mouse embryos. These findings may help develop a therapeutic strategy to reduce scarring and promote hair follicle regeneration.


Assuntos
Feto , Folículo Piloso , Regeneração , Pele , Proteína 2 Relacionada a Twist , Cicatrização , Animais , Folículo Piloso/metabolismo , Camundongos , Cicatrização/genética , Cicatrização/fisiologia , Feto/metabolismo , Pele/metabolismo , Proteína 2 Relacionada a Twist/metabolismo , Proteína 2 Relacionada a Twist/genética , Camundongos Knockout , Camundongos Endogâmicos ICR , Feminino , Fibroblastos/metabolismo , Proteínas Repressoras , Proteína 1 Relacionada a Twist
7.
Nat Commun ; 15(1): 4034, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740814

RESUMO

Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.


Assuntos
Proliferação de Células , Hepatócitos , Metabolismo dos Lipídeos , Organoides , Transcriptoma , Humanos , Hepatócitos/metabolismo , Hepatócitos/citologia , Organoides/metabolismo , Feto/metabolismo , Adulto , Interleucina-6/metabolismo , Interleucina-6/genética , Células Cultivadas
8.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715090

RESUMO

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Assuntos
Encéfalo , Citocinas , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento , Placenta , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Feminino , Animais , Gravidez , Masculino , Citocinas/metabolismo , Citocinas/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/imunologia , Encéfalo/embriologia , Placenta/metabolismo , Placenta/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/metabolismo , Poli I-C/toxicidade , Transcriptoma , Modelos Animais de Doenças , Feto/metabolismo
10.
Sci Data ; 11(1): 436, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698003

RESUMO

During the process of labor, the intrapartum transperineal ultrasound examination serves as a valuable tool, allowing direct observation of the relative positional relationship between the pubic symphysis and fetal head (PSFH). Accurate assessment of fetal head descent and the prediction of the most suitable mode of delivery heavily rely on this relationship. However, achieving an objective and quantitative interpretation of the ultrasound images necessitates precise PSFH segmentation (PSFHS), a task that is both time-consuming and demanding. Integrating the potential of artificial intelligence (AI) in the field of medical ultrasound image segmentation, the development and evaluation of AI-based models rely significantly on access to comprehensive and meticulously annotated datasets. Unfortunately, publicly accessible datasets tailored for PSFHS are notably scarce. Bridging this critical gap, we introduce a PSFHS dataset comprising 1358 images, meticulously annotated at the pixel level. The annotation process adhered to standardized protocols and involved collaboration among medical experts. Remarkably, this dataset stands as the most expansive and comprehensive resource for PSFHS to date.


Assuntos
Inteligência Artificial , Cabeça , Sínfise Pubiana , Ultrassonografia Pré-Natal , Humanos , Sínfise Pubiana/diagnóstico por imagem , Feminino , Gravidez , Cabeça/diagnóstico por imagem , Feto/diagnóstico por imagem
11.
Sensors (Basel) ; 24(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733053

RESUMO

The fetal electrocardiogram (FECG) records changes in the graph of fetal cardiac action potential during conduction, reflecting the developmental status of the fetus in utero and its physiological cardiac activity. Morphological alterations in the FECG can indicate intrauterine hypoxia, fetal distress, and neonatal asphyxia early on, enhancing maternal and fetal safety through prompt clinical intervention, thereby reducing neonatal morbidity and mortality. To reconstruct FECG signals with clear morphological information, this paper proposes a novel deep learning model, CBLS-CycleGAN. The model's generator combines spatial features extracted by the CNN with temporal features extracted by the BiLSTM network, thus ensuring that the reconstructed signals possess combined features with spatial and temporal dependencies. The model's discriminator utilizes PatchGAN, employing small segments of the signal as discriminative inputs to concentrate the training process on capturing signal details. Evaluating the model using two real FECG signal databases, namely "Abdominal and Direct Fetal ECG Database" and "Fetal Electrocardiograms, Direct and Abdominal with Reference Heartbeat Annotations", resulted in a mean MSE and MAE of 0.019 and 0.006, respectively. It detects the FQRS compound wave with a sensitivity, positive predictive value, and F1 of 99.51%, 99.57%, and 99.54%, respectively. This paper's model effectively preserves the morphological information of FECG signals, capturing not only the FQRS compound wave but also the fetal P-wave, T-wave, P-R interval, and ST segment information, providing clinicians with crucial diagnostic insights and a scientific foundation for developing rational treatment protocols.


Assuntos
Eletrocardiografia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Humanos , Eletrocardiografia/métodos , Feminino , Gravidez , Aprendizado Profundo , Monitorização Fetal/métodos , Algoritmos , Feto
13.
Environ Sci Technol ; 58(19): 8117-8134, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701366

RESUMO

Due to its widespread applications in various fields, antibiotics are continuously released into the environment and ultimately enter the human body through diverse routes. Meanwhile, the unreasonable use of antibiotics can also lead to a series of adverse outcomes. Pregnant women and developing fetuses are more susceptible to the influence of external chemicals than adults. The evaluation of antibiotic exposure levels through questionnaire surveys or prescriptions in medical records and biomonitoring-based data shows that antibiotics are frequently prescribed and used by pregnant women around the world. Antibiotics may be transmitted from mothers to their offspring through different pathways, which then adversely affect the health of offspring. However, there has been no comprehensive review on antibiotic exposure and mother-to-child transmission in pregnant women so far. Herein, we summarized the exposure levels of antibiotics in pregnant women and fetuses, the exposure routes of antibiotics to pregnant women, and related influencing factors. In addition, we scrutinized the potential mechanisms and factors influencing the transfer of antibiotics from mother to fetus through placental transmission, and explored the adverse effects of maternal antibiotic exposure on fetal growth and development, neonatal gut microbiota, and subsequent childhood health. Given the widespread use of antibiotics and the health threats posed by their exposure, it is necessary to comprehensively track antibiotics in pregnant women and fetuses in the future, and more in-depth biological studies are needed to reveal and verify the mechanisms of mother-to-child transmission, which is crucial for accurately quantifying and evaluating fetal health status.


Assuntos
Antibacterianos , Exposição Materna , Humanos , Feminino , Gravidez , Troca Materno-Fetal , Feto/efeitos dos fármacos
14.
Comput Biol Med ; 175: 108501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703545

RESUMO

The segmentation of the fetal head (FH) and pubic symphysis (PS) from intrapartum ultrasound images plays a pivotal role in monitoring labor progression and informing crucial clinical decisions. Achieving real-time segmentation with high accuracy on systems with limited hardware capabilities presents significant challenges. To address these challenges, we propose the real-time segmentation network (RTSeg-Net), a groundbreaking lightweight deep learning model that incorporates innovative distribution shifting convolutional blocks, tokenized multilayer perceptron blocks, and efficient feature fusion blocks. Designed for optimal computational efficiency, RTSeg-Net minimizes resource demand while significantly enhancing segmentation performance. Our comprehensive evaluation on two distinct intrapartum ultrasound image datasets reveals that RTSeg-Net achieves segmentation accuracy on par with more complex state-of-the-art networks, utilizing merely 1.86 M parameters-just 6 % of their hyperparameters-and operating seven times faster, achieving a remarkable rate of 31.13 frames per second on a Jetson Nano, a device known for its limited computing capacity. These achievements underscore RTSeg-Net's potential to provide accurate, real-time segmentation on low-power devices, broadening the scope for its application across various stages of labor. By facilitating real-time, accurate ultrasound image analysis on portable, low-cost devices, RTSeg-Net promises to revolutionize intrapartum monitoring, making sophisticated diagnostic tools accessible to a wider range of healthcare settings.


Assuntos
Cabeça , Sínfise Pubiana , Ultrassonografia Pré-Natal , Humanos , Feminino , Gravidez , Cabeça/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Sínfise Pubiana/diagnóstico por imagem , Aprendizado Profundo , Feto/diagnóstico por imagem
15.
Sci Rep ; 14(1): 8500, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605102

RESUMO

Intrauterine growth restriction (IUGR) occurs both in humans and domestic species. It has a particularly high incidence in pigs, and is a leading cause of neonatal morbidity and mortality as well as impaired postnatal growth. A key feature of IUGR is impaired muscle development, resulting in decreased meat quality. Understanding the developmental origins of IUGR, particularly at the molecular level, is important for developing effective strategies to mitigate its economic impact on the pig industry and animal welfare. The aim of this study was to characterise transcriptional profiles in the muscle of growth restricted pig foetuses at different gestational days (GD; gestational length ~ 115 days), focusing on selected genes (related to development, tissue injury and metabolism) that were previously identified as dysregulated in muscle of GD90 fetuses. Muscle samples were collected from the lightest foetus (L) and the sex-matched foetus with weight closest to the litter average (AW) from each of 22 Landrace x Large White litters corresponding to GD45 (n = 6), GD60 (n = 8) or GD90 (n = 8), followed by analyses, using RT-PCR and protein immunohistochemistry, of selected gene targets. Expression of the developmental genes, MYOD, RET and ACTN3 were markedly lower, whereas MSTN expression was higher, in the muscle of L relative to AW littermates beginning on GD45. Levels of all tissue injury-associated transcripts analysed (F5, PLG, KNG1, SELL, CCL16) were increased in L muscle on GD60 and, most prominently, on GD90. Among genes involved in metabolic regulation, KLB was expressed at higher levels in L than AW littermates beginning on GD60, whereas both IGFBP1 and AHSG were higher in L littermates on GD90 but only in males. Furthermore, the expression of genes specifically involved in lipid, hexose sugar or iron metabolism increased or, in the case of UCP3, decreased in L littermates on GD60 (UCP3, APOB, ALDOB) or GD90 (PNPLA3, TF), albeit in the case of ALDOB this only involved females. In conclusion, marked dysregulation of genes with critical roles in development in L foetuses can be observed from GD45, whereas for a majority of transcripts associated with tissue injury and metabolism differences between L and AW foetuses were apparent by GD60 or only at GD90, thus identifying different developmental windows for different types of adaptive responses to IUGR in the muscle of porcine foetuses.


Assuntos
Desenvolvimento Fetal , Retardo do Crescimento Fetal , Músculo Esquelético , Suínos , Humanos , Animais , Masculino , Feminino , Suínos/genética , Suínos/fisiologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Fetal/genética , Transcriptoma , Idade Gestacional , Reação em Cadeia da Polimerase em Tempo Real , Imuno-Histoquímica , Feto/metabolismo , Genes Controladores do Desenvolvimento , Proteína MyoD/genética , Proteína MyoD/metabolismo , Actinina/genética , Actinina/metabolismo
16.
Int Immunopharmacol ; 133: 112070, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640716

RESUMO

Skin, the largest organ of body, is a highly immunogenic tissue with a diverse collection of immune cells. Highly polymorphic human leukocyte antigen (HLA) molecules have a central role in coordinating immune responses as recognition molecules. Nevertheless, HLA gene expression patterns among diverse cell types within a specific organ, like the skin, have yet to be thoroughly investigated, with stromal cells attracting much less attention than immune cells. To illustrate HLA expression profiles across different cell types in the skin, we performed single-cell RNA sequencing (scRNA-seq) analyses on skin datasets, covering adult and fetal skin, and hair follicles as the skin appendages. We revealed the variation in HLA expression between different skin populations by examining normal adult skin datasets. Moreover, we evaluated the potential immunogenicity of multiple skin populations based on the expression of classical HLA class I genes, which were well represented in all cell types. Furthermore, we generated scRNA-seq data of developing skin from fetuses of 15 post conception weeks (PCW), 17 PCW, and 22 PCW, delineating the dynamic expression of HLA genes with cell type-dependent variation among various cell types during development. Notably, the pseudotime trajectory analysis unraveled the significant variance in HLA genes during the evolution of vascular endothelial cells. Moreover, we uncovered the immune-privileged properties of hair follicles at single-cell resolution. Our study presents a comprehensive single-cell transcriptomic landscape of HLA genes in the skin, which provides new insights into variation in HLA molecules and offers a clue for allogeneic skin transplantation.


Assuntos
Perfilação da Expressão Gênica , Antígenos HLA , Análise de Célula Única , Pele , Transcriptoma , Humanos , Pele/imunologia , Pele/metabolismo , Antígenos HLA/genética , Antígenos HLA/imunologia , Folículo Piloso/imunologia , Folículo Piloso/metabolismo , Feto/imunologia , Adulto , Privilégio Imunológico
17.
Zhonghua Fu Chan Ke Za Zhi ; 59(4): 279-287, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38644274

RESUMO

Objective: To evaluate the diagnostic efficiency of copy number variation sequencing (CNV-seq) to detect the deletion or duplication of DMD gene in prenatal diagnosis. Methods: A retrospective analysis was carried out on the CNV-seq results of 34 544 fetuses diagnosed in the First People's Hospital of Yunnan Province from January 2018 to July 2023. A total of 156 cases of fetuses were collected, including Group 1:125 cases with family history of Duchenne muscular dystrophy or Becker muscular dystrophy (DMD/BMD), and Group 2:31 cases with no family history but a DMD gene deletion or duplication was detected unexpectedly by CNV-seq. Multiplex ligation-dependent probe amplification (MLPA) was used as a standard method to detect the deletion or duplication. Consistency test was carried out basing on the results of CNV-seq and MLPA of all 156 cases. Results: Comparing to MLPA, CNV-seq had a coincidence rate of 92.3% (144/156) for DMD gene deletion or duplication, with a sensitivity and positive predictive value of 88.2%, with a specificity and negative predictive value of 94.3%, a missed detection rate of 3.8%, and a Kappa value of 0.839. CNV-seq missed 4 cases with deletions and 2 with duplications due to involved fragments less than 100 Kb, among 20 cases of deletions and 6 cases of duplications detected by MLPA in Group 1. In Group 2, the deletions and duplications detected by CNV-seq were 42% (13/31) and 58% (18/31), respectively, in which the percentage of duplication was higher than that in Group 1. Among those 18 cases with duplications, 3 cases with duplication locating in exon 42~67 were likely pathogenic; while 9 cases with duplication covering the 5' or 3' end of the DMD gene, containing exon 1 or 79 and with only one breakpoint within the gene, along with the last 6 cases with duplications locating at chrX: 32650635_32910000 detected only by CNV-seq, which might be judged as variants of uncertain significance. Conclusions: CNV-seq has a good efficiency to detect fetal DMD gene deletion or duplication in prenatal diagnosis, while a further verification test by MLPA is recommended. The duplications on chrX: 32650635_32910000, 5' or 3' end of DMD gene detected by CNV-seq should be carefully verified and assessed because those variants appear to be nonpathogenic polymorphisms.


Assuntos
Variações do Número de Cópias de DNA , Deleção de Genes , Duplicação Gênica , Distrofia Muscular de Duchenne , Diagnóstico Pré-Natal , Humanos , Diagnóstico Pré-Natal/métodos , Gravidez , Feminino , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/diagnóstico , Estudos Retrospectivos , Sensibilidade e Especificidade , Distrofina/genética , Feto/anormalidades , Reação em Cadeia da Polimerase Multiplex/métodos
18.
Bioethics ; 38(5): 419-424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652592

RESUMO

Parthenogenesis is a form of asexual reproduction in which a gamete (ovum or sperm) develops without being fertilized. Tomer Jordi Chaffer uses parthenogenesis to challenge Don Marquis' future-like-ours (FLO) argument against abortion. According to Marquis, (1) what makes it morally wrong to kill us is that it would deprive us of a possible future that we might come to value-a future "like ours" (FLO) and (2) human fetuses are numerically identical to any adult human organism they may develop into, and thus have a FLO. Chaffer contends that if human ova are capable of parthenogenesis, then they would have a FLO, which contraception may deprive them of, but contends this is absurd. Bruce P. Blackshaw challenges Chaffer, contending sexually fertilized embryos are not identical to unfertilized ovum, but this would yield a more absurd implication, that fertilization deprives an ovum of a FLO! Here I show Marquis' account of identity rules out both Chaffer's and Blackshaw's accounts.


Assuntos
Partenogênese , Humanos , Feminino , Gravidez , Masculino , Aborto Induzido/ética , Valor da Vida , Fertilização , Óvulo , Feto
19.
Sci Data ; 11(1): 383, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615064

RESUMO

The rete ovarii (RO) is an epithelial structure that arises during development in close proximity to the ovary and persists throughout adulthood. However, the functional significance of the RO remains elusive, and it is absent from recent discussions of female reproductive anatomy. The RO comprises three regions: the intraovarian rete within the ovary, the extraovarian rete in the periovarian tissue, and the connecting rete linking the two. We hypothesize that the RO plays a pivotal role in ovarian homeostasis and responses to physiological changes. To begin to uncover the nature and function of RO cells, we conducted transcriptomic profiling of the RO. This study presents three datasets, and reports our analysis and quality control approaches for bulk, single-cell, and nucleus-level transcriptomics of the fetal and adult RO tissues using the Pax8-rtTA; Tre-H2B-GFP mouse line, where all RO regions express nuclear GFP. The integration and rigorous validation of these datasets will advance our understanding of the RO's roles in ovarian development, female maturation, and adult female fertility.


Assuntos
Ovário , Transcriptoma , Animais , Feminino , Camundongos , Feto , Perfilação da Expressão Gênica , Ovário/embriologia , Ovário/crescimento & desenvolvimento
20.
BMC Pregnancy Childbirth ; 24(1): 263, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605299

RESUMO

BACKGROUND: Children exposed prenatally to alcohol or cannabinoids individually can exhibit growth deficits and increased risk for adverse birth outcomes. However, these drugs are often co-consumed and their combined effects on early brain development are virtually unknown. The blood vessels of the fetal brain emerge and mature during the neurogenic period to support nutritional needs of the rapidly growing brain, and teratogenic exposure during this gestational window may therefore impair fetal cerebrovascular development. STUDY DESIGN: To determine whether prenatal polysubstance exposure confers additional risk for impaired fetal-directed blood flow, we performed high resolution in vivo ultrasound imaging in C57Bl/6J pregnant mice. After pregnancy confirmation, dams were randomly assigned to one of four groups: drug-free control, alcohol-exposed, cannabinoid-exposed or alcohol-and-cannabinoid-exposed. Drug exposure occurred daily between Gestational Days 12-15, equivalent to the transition between the first and second trimesters in humans. Dams first received an intraperitoneal injection of either cannabinoid agonist CP-55,940 (750 µg/kg) or volume-equivalent vehicle. Then, dams were placed in vapor chambers for 30 min of inhalation of either ethanol or room air. Dams underwent ultrasound imaging on three days of pregnancy: Gestational Day 11 (pre-exposure), Gestational Day 13.5 (peri-exposure) and Gestational Day 16 (post-exposure). RESULTS: All drug exposures decreased fetal cranial blood flow 24-hours after the final exposure episode, though combined alcohol and cannabinoid co-exposure reduced internal carotid artery blood flow relative to all other exposures. Umbilical artery metrics were not affected by drug exposure, indicating a specific vulnerability of fetal cranial circulation. Cannabinoid exposure significantly reduced cerebroplacental ratios, mirroring prior findings in cannabis-exposed human fetuses. Post-exposure cerebroplacental ratios significantly predicted subsequent perinatal mortality (p = 0.019, area under the curve, 0.772; sensitivity, 81%; specificity, 85.70%) and retroactively diagnosed prior drug exposure (p = 0.005; AUC, 0.861; sensitivity, 86.40%; specificity, 66.7%). CONCLUSIONS: Fetal cerebrovasculature is significantly impaired by exposure to alcohol or cannabinoids, and co-exposure confers additional risk for adverse birth outcomes. Considering the rising potency and global availability of cannabis products, there is an imperative for research to explore translational models of prenatal drug exposure, including polysubstance models, to inform appropriate strategies for treatment and care in pregnancies affected by drug exposure.


Assuntos
Canabinoides , Morte Perinatal , Gravidez , Camundongos , Feminino , Animais , Criança , Humanos , Canabinoides/efeitos adversos , Mortalidade Perinatal , Etanol/efeitos adversos , Feto/irrigação sanguínea , Modelos Animais de Doenças , Circulação Cerebrovascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA